Skip to main content

Azure AI Studio

Using Mistral models deployed on Azure AI Studio​

Sample Usage - setting env vars​

Set MISTRAL_AZURE_API_KEY and MISTRAL_AZURE_API_BASE in your env

MISTRAL_AZURE_API_KEY = "zE************""
MISTRAL_AZURE_API_BASE = "https://Mistral-large-nmefg-serverless.eastus2.inference.ai.azure.com/v1"
from litellm import completion
import os

response = completion(
model="mistral/Mistral-large-dfgfj",
messages=[
{"role": "user", "content": "hello from litellm"}
],
)
print(response)

Sample Usage - passing api_base and api_key to litellm.completion​

from litellm import completion
import os

response = completion(
model="mistral/Mistral-large-dfgfj",
api_base="https://Mistral-large-dfgfj-serverless.eastus2.inference.ai.azure.com",
api_key = "JGbKodRcTp****"
messages=[
{"role": "user", "content": "hello from litellm"}
],
)
print(response)

[LiteLLM Proxy] Using Mistral Models​

Set this on your litellm proxy config.yaml

model_list:
- model_name: mistral
litellm_params:
model: mistral/Mistral-large-dfgfj
api_base: https://Mistral-large-dfgfj-serverless.eastus2.inference.ai.azure.com
api_key: JGbKodRcTp****